Multiplicity and Graphing Polynomials

SWBAT apply the multiplicity of roots; graph polynomial functions
Warm up

1) Describe the right-hand and lefi-hand behavior of the graph of the polynomial function.

f(x)=-2x"-5x"+32 f(x)=x"-29x* +100
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1) Do you see a relationship between the degree of the polynomial and the
number of turning points that the graph can have?
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2) Look at the roots of each graph. Sometimes the graph crosses the x-
axis and sometimes the graph “bounces off™ the x —axis. Can you
come with a generalization as to why this happens?

Real Zeros of Polynomial Functions
It can be shown that for a polynomial function f of degree n, the following statements are true.

1) The function f has, at most, n real zeros.

2) The graph of fhas, at most n — | turning points. (Turning points, also called relative minima or relative
maxima, are points which the graph changes from increasing to decreasing or vice versa.)

If f1s a polynomial function and @ is a real number, the following statements are equivalent.
1) x= ais areal zero of the function f.

2) x= @ is a solution of the polynomial equation f{x) =0

3) (x —a)is a factor of the polynomial f{x).

4) (a, 0)is an x-intercept of the graph of /£




Repeated Zeros
Definition: A factor (x — a)*, £>1, yields a repeated zero x = a of multiplicity k.

1) If ks odd, the graph crosses the y-axis at x = a.

2) If kis even, the graph touches the x-axis (but does not cross the x-axis) atx = a.

Sketching Polynomials using zeros, end behavior, and the leading coefficient
test.

To sketch the graph of a polynomial:
STEP 1: (a) Find the x-intercepts, if any, by solving the equation f{x)=0.
(b) Find the y-intercept by letting x=0 and finding the value of f{0).
STEP 2: Determine whether the graph of f crosses or touches the x-axis at each x-intercept.
STEP 3: Determine the end behavior:
STEP 4: Determine the maximum number of tuming points on the graph of £,
STEP 5: Use the x-intercept(s) to find the intervals on which the graph of fis above the x-axis and the
intervals on which the graph is below the x-axis.
STEP 6: Plot the points obtained in Steps | and 5, and use the remaining information to connect them with a
smooth, continuous curve.

For each of the following:

a)  Describe the end behavior of the function.

b)  Find all real zeros of the polynomial functions.

¢)  Determine the multiplicity of each zero and the number of turning points of the graph of the function.
~d)  Sketch the graph. Be sure to find the x_and y intercepts

1 f(x)=x* +10x+25
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6) Refer to the graph below.
Write a possible equation for this polynomial in factored form.

x=-5 X<o x= |
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7) Refer to the graph below.
Write a possible equation for this polynomial in factored form.
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